Se un numero è il rapporto di due numeri interi (ad esempio, 1 su 10, -5 su 23, 1.543 su 10, ecc.), allora è un numero razionale. I numeri irrazionali, se scritti come decimali, continuano indefinitamente senza ripetersi. Come funzionano le cose Quando senti le parole “razionale” e “irrazionale”, potrebbero farti venire in mente l’implacabile analitico Spock di “Star Trek”. Se sei un matematicotuttavia, probabilmente pensi ai rapporti tra numeri interi e radici quadrate.
Nel regno della matematica, dove le parole a volte hanno significati specifici che sono molto diversi dall’uso quotidiano, la differenza tra razionale e numeri irrazionali non ha nulla a che fare con le emozioni. Dato che esistono infiniti numeri irrazionali, faresti bene ad acquisirne una conoscenza di base.
Proprietà dei numeri irrazionali
“Nel ricordare la differenza tra numeri razionali e irrazionali, pensa a una parola: rapporto”, spiega Eric D. Kolaczyk. È professore presso il dipartimento di matematica e statistica dell’Università di Boston e direttore dell’università Istituto Rafik B. Hariri per l’informatica e la scienza e ingegneria computazionale.
“Se puoi scrivere un numero come rapporto tra due numeri interi (ad esempio, 1 su 10, -5 su 23, 1.543 su 10, ecc.), allora lo inseriamo nella categoria dei numeri razionali”, afferma Kolaczyk in una e-mail. “Altrimenti diciamo che è irrazionale.”
Puoi esprimere un numero intero o una frazione (parti di numeri interi) come rapporto, utilizzando un numero intero chiamato numeratore sopra un altro numero intero chiamato denominatore. Dividi il denominatore nel numeratore. Questo può darti un numero come 1/4 o 500/10 (altrimenti noto come 50).
Numeri irrazionali: esempi ed eccezioni
I numeri irrazionali, a differenza dei numeri razionali, sono piuttosto complicati. COME Wolfram MathWorld spiega, non possono essere espressi da frazioni e quando provi a scriverli come un numero con un punto decimalele cifre continuano ad andare avanti, senza mai fermarsi o ripetere uno schema.
Allora che tipo di numeri si comportano in modo così folle? Fondamentalmente, quelli che descrivono cose complicate.
Pi
Forse il numero irrazionale più famoso è pi – a volte scritto come π, la lettera greca per “p” – che esprime il rapporto tra la circonferenza di un cerchio e il diametro di quel cerchio. Come ha spiegato il matematico Steven Bogart Articolo di Scientific American del 1999quel rapporto sarà sempre uguale a pi greco, indipendentemente dalla dimensione del cerchio.
Poiché i matematici babilonesi tentarono di calcolare pi greco quasi 4.000 anni fagenerazioni successive di matematici hanno continuato a lavorare, inventando stringhe sempre più lunghe dell’espansione decimale con schemi non ripetitivi.
Nel 2019, ricercatore di Google Emma Hakura Iwao è riuscita ad estendere pi a 31.415.926.535.897 cifre.
Alcune (ma non tutte) radici quadrate
A volte, a radice quadrata — ovvero un fattore di un numero che, moltiplicato per se stesso, produce il numero da cui hai iniziato — è un numero irrazionale, a meno che non sia un quadrato perfetto è un numero intero, ad esempio 4, la radice quadrata di 16.
Uno degli esempi più evidenti è il radice quadrata di 2, che equivale a 1.414 più una serie infinita di cifre non ripetitive. Tale valore corrisponde alla lunghezza della diagonale all’interno di un quadrato, come prima descritto dagli antichi greci nel teorema di Pitagora.
Perché usiamo le parole “razionale” e “irrazionale”?
“In effetti, in genere usiamo ‘razionale’ per indicare qualcosa di più simile a quello basato sulla ragione o simile”, afferma Kolaczyk. “Il suo uso in matematica sembra essere emerso già nel 1200 in fonti britanniche (secondo l’Oxford English Dictionary). Se si fa risalire sia ‘razionale’ che ‘rapporto’ alle loro radici latine, si scopre che in entrambi i casi il root riguarda il “ragionamento”, in senso lato.”
Ciò che è più chiaro è che sia i numeri irrazionali che quelli razionali hanno svolto un ruolo importante nel progresso della civiltà.
Mentre il linguaggio risale probabilmente all’origine della specie umana, i numeri sono arrivati molto più tardi, spiega Marco Zegarelli, insegnante di matematica e autore che ha scritto 10 libri della serie “For Dummies”. I cacciatori-raccoglitori, dice, probabilmente non avevano bisogno di molta precisione numerica, a parte la capacità di stimare e confrontare approssimativamente le quantità.
“Avevano bisogno di concetti del tipo: ‘Non abbiamo più mele'”, afferma Zegarelli. “Non avevano bisogno di sapere: ‘Abbiamo esattamente 152 mele.'”
Ma quando gli esseri umani iniziarono a ritagliarsi appezzamenti di terreno per creare fattorie, costruire città e produrre e commerciare beni, viaggiando sempre più lontano dalle loro case, ebbero bisogno di calcoli più complessi.
“Supponiamo di costruire una casa con un tetto in cui l’aumento è della stessa lunghezza della corsa dalla base al suo punto più alto”, dice Kolaczyk. “Quanto è lungo il tratto della superficie del tetto dalla cima al bordo esterno? Sempre un fattore della radice quadrata di 2 dell’alzata (corsa). E anche questo è un numero irrazionale.”
Il ruolo dei numeri irrazionali nella società moderna
Nel 21° secolo tecnologicamente avanzato, i numeri irrazionali continuano a svolgere un ruolo cruciale, secondo Carrie Manore. È una scienziata e matematica del Gruppo Sistemi Informativi e Modellazione di Laboratorio Nazionale di Los Alamos.
“Pi greco è ovviamente il primo numero irrazionale di cui parlare”, afferma Manore via e-mail. “Ne abbiamo bisogno per determinare l’area e la circonferenza dei cerchi. È fondamentale per calcolare gli angoli, e gli angoli sono fondamentali per la navigazione, la costruzione, il rilevamento, l’ingegneria e altro ancora. La comunicazione in radiofrequenza dipende da seni e coseni che coinvolgono pi greco.”
Inoltre, i numeri irrazionali svolgono un ruolo chiave nella complessa matematica che rende possibile il trading azionario ad alta frequenza, la modellizzazione, le previsioni e la maggior parte delle analisi statistiche, tutte attività che mantengono viva la nostra società.
“In effetti”, aggiunge Manore, “nel nostro mondo moderno, ha quasi senso chiedersi invece: ‘Dove sono i numeri irrazionali?” non in uso?'”
Questo articolo è stato aggiornato insieme alla tecnologia AI, quindi verificato e modificato da un editor di HowStuffWorks.
Domande frequenti
Cosa sono i numeri irrazionali? I numeri irrazionali non possono essere espressi come rapporto tra due numeri interi. Se scritti come decimali, continuano indefinitamente senza ripetersi.
Quali sono esempi di famosi numeri irrazionali? Pi (π), che descrive il rapporto tra la circonferenza di un cerchio e il suo diametro, è forse il numero irrazionale più famoso. Un altro esempio è la radice quadrata di 2, che è circa 1,414 seguita da una serie infinita di cifre non ripetitive.
Qual è il numero di Eulero ed è un numero irrazionale? Il numero di Eulero, spesso rappresentato come “e”, è un altro numero irrazionale ben noto. È approssimativamente uguale a 2,71828 e si presenta naturalmente in molte aree della matematica, soprattutto in situazioni in cui è coinvolta la crescita.
Come si inserisce la sezione aurea nel concetto di numeri irrazionali? La sezione aurea, spesso indicata con la lettera greca φ (phi), è un numero irrazionale pari all’incirca a 1,6180339887. Ha proprietà matematiche uniche e appare in vari settori dell’arte, dell’architettura e della natura grazie alle sue proporzioni esteticamente gradevoli.
Qual è stato il primo numero irrazionale inventato? La radice quadrata di 2, espressa anche come √2 o 1,41421356237.